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Jamming, hysteresis, and oscillation in scalar models for shear thickening
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We investigate shear thickening and jamming within the framework of a family of spatially homogeneous,
scalar rheological models. These are based on the ‘‘soft glassy rheology’’ model of Sollichet al. @Phys. Rev.
Lett. 78, 2020 ~1997!#, but with an effective temperaturex that is a decreasing function of either the global
stresss or the local strainl. For appropriatex5x(s), it is shown that the flow curves include a region of

negative slope, around which the stress exhibits hysteresis under a cyclically varying imposed strain rateġ. A

subclass of thesex(s) have flow curves that touch theġ50 axis for a finite range of stresses; imposing a stress
from this rangejams the system, in the sense that the straing creeps only logarithmically with timet, g(t)
; ln t. These same systems may produce a finite asymptotic yield stress under an imposed strain, in a manner
that depends on the entire stress history of the sample, a phenomenon we refer to ashistory-dependent
jamming. In contrast, whenx5x( l ) the flow curves are always monotonic, but we show that somex( l )
generate an oscillatory strain response for a range of steady imposed stresses. Similar spontaneous oscillations
are observed in a simplified model with fewer degrees of freedom. We discuss this result in relation to the
temporal instabilities observed in rheological experiments and stick-slip behavior found in other contexts, and
comment on the possible relationship with ‘‘delay differential equations’’ that are known to produce oscilla-
tions and chaos.

DOI: 10.1103/PhysRevE.64.061509 PACS number~s!: 83.10.Gr, 83.60.Rs, 64.70.Pf
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I. INTRODUCTION

A wide variety of materials can be driven into a no
equilibrium state that is either solidlike and static, or flui
like but only relaxes on time scales that far exceed the
perimental time frame, if at all. Such states are often refer
to as ‘‘jammed,’’ and are realizable in molecular liquids ha
ing undergone a rapid quench to low temperatures, or
loids at a high volume fraction, to cite just two exampl
@1,2#. It has recently been postulated by Liu and Nagel t
the nature of the jammed state may be independent of
manner in which it was formed@3#. For example, a stress
induced jamming transition may produce a qualitative
similar state to a temperature-induced transition. This w
expressed in the form of a ‘‘jamming phase diagram,’’
which jammed configurations occupy a compact region n
to the origin of a phase space comprised of three axes:
temperatureT, the volumeV, and the loads @3,4#.

In its simplest form, the Liu-Nagel jamming phase di
gram suggests that increasing the applied load can only
crease the likelihood of flow. However, it is equally feasib
for an applied load to induce a jammed state. For instanc
a pile of sand is formed and then gravity is switched off, t
system unjams without any significant variation in volum
Thus the load~here controlled by gravity! jams the system
This concurs with the earlier claim that jammed systems m
be classified as ‘‘fragile’’—that is, they can support only ce
tain, compatibleloads, and will rearrange or flow under a
incompatible load@5#. Furthermore, one could also envisa
a class of loadings that can alternately induce and destr
jammed state as the magnitude of the load increases, a
ation that could be referred to as ‘‘reentrant jamming.’’

The purpose of this paper is to investigate the nature
1063-651X/2001/64~6!/061509~16!/$20.00 64 0615
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transitions to or from jammed configurations that have,
their control parameter, the imposed shear stresss. We do
this by providing concrete examples of models that exh
jamming transitions withs, including instances of the reen
trant jamming scenario described above. These models
based on the ‘‘soft glassy rheology’’~SGR! model of Sollich
et al. @6–8#, which was originally devised to highlight th
possible existence of glassy relaxation in a range of soft
terials, such as foams, emulsions, pastes, etc. It is par
etrized by an effective temperaturex, which in the context of
soft matter is thought to represent some form of mechan
noise, but may refer to the true thermal temperature in ot
applications.

As it was originally defined, the SGR model only exhibi
shear thinning, which is clearly unsuitable for our purpos
Therefore, we consider variants of the model in which t
effective temperaturex is no longer constant, but can var
with the state of the system. More precisely,x is treated a
function of both the global stresss and the local strainl, i.e.,
x5x(s,l ). By choosing suitable forms ofx(s,l ), systems
can be constructed that become ‘‘colder’’ as they beco
more stressed, which allows for the system to shear thic
and even ‘‘jam.’’

For clarity, we restrict our attention to two limiting form
of x(s,l ), namely,x(s) andx( l ). In the former case, certain
classes ofx(s) are shown to exhibit a flow curve~i.e., the
curve of the stresss versus the strain rateġ under conditions
of steady flow! that is nonmonotonic, and can touch theġ
50 axis for range of finite values ofs. Thus a ‘‘jammed’’
state with ġ501 can be reached for somes but not for
others. Furthermore, it is also shown that, for systems dri
by an imposedg(t), whether or not a jammed configuratio
is approached at late times depends on the entire strain
©2001 The American Physical Society09-1
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tory of the system, and not just the behavior ofg(t) as t
→`. We refer to this phenomenon as ‘‘history-depend
jamming.’’

The behavior of systems withx5x( l ) is somewhat differ-
ent, but no less remarkable. When driven by an imposeds,
certain forms ofx( l ) exhibit a regime in which the viscosit
never reaches its steady flow value but oscillates in tim
with a wave form that is approximately sinusoidal near to
transition point, but becomes increasingly sharp deep into
oscillatory regime. The models considered here are spat
homogeneous, and so this oscillation is purely temporal, h
ing no spatial component. It is tempting to associate th
oscillations with the stick-slip behavior observed in granu
systems and plate tectonics@9–12#, but we shall give reason
why we believe that the underlying physics might be rat
different. We cannot rule out the possibility of more compl
oscillatory behavior, maybe even chaotic, arising in as-of-
unobserved regions of parameter space.

The finding of a bifurcation to oscillatory behavior forx
5x( l ) is all the more remarkable because the flow curve~as
already defined! is everywhere monotonic increasing for th
class ofx. By contrast, instances of rheological instabiliti
that have been found experimentally have tended to occu
ranges of parameters in which the flow curve has a nega
gradient@13–19#. This suggests that mechanism behind
instability observed here may be qualitatively different
those cited above, and may be realizable in some rang
materials that has yet to be identified.

This paper is arranged as follows. In Sec. II the class
models to be studied is defined, with particular attention
ing paid to those aspects that differ from the SGR mod
The known results of the SGR model that are relevant to
subsequent discussion are then briefly summarized in
III. Systems withx5x(s) are described in Sec. IV, where
explained how the flow curves can be graphically interpre
as mappings from the SGR flow curves. The time-depend
behavior of the system has been found by numerical inte
tion of the governing master equation. An example
history-dependent jamming is presented, and explained
terms of the stability of the steady flow solutions.

In Sec. V we turn to consider the casex5x( l ), and ana-
lytically prove that the flow curve is everywhere monoton
Nonetheless, the simulations results presented here cle
show thatġ(t) can oscillate in time for a range of impose
stressess. A qualitative explanation of the emergence of t
oscillatory phase is also given, in terms of the model’s int
nal degrees of freedom. The intensive nature of the sim
tions has meant that only a small range of functional for
for x( l ) have been investigated, and hence it has not b
possible to fully characterize this range of models. Therefo
we consider a simplified model in Sec. VI, for which th
simulation times are significantly shorter and a more co
plete picture has been realized. Some results of this m
have also been presented elsewhere@20#. This reduced mode
clearly shows that the mean value ofġ during the oscillatory
motion deviates from the steady flow value by as much as
order of magnitude. Finally, in Sec. VII we discuss som
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outstanding issues raised by this work, before summariz
our results in Sec. VIII.

II. MODELS OF THE SGR TYPE

All of the models studied in this paper represent gener
zations of the SGR model of Sollichet al. @6–8#. It is, there-
fore prudent, to first describe those features that are com
to this class of models, before considering each of the dif
ent generalizations in turn. This is the purpose of the curr
section. Since the various assumptions that lie behind
construction of the SGR model have already been discus
at length elsewhere, we shall here give just a brief overv
of the derivation and refer the reader to Refs.@6–8# for more
detailed physical arguments. Only those aspects that d
from the SGR model will be discussed in full.

Our goal is to construct deliberately simplified mode
that exhibit shear thickening and jamming, but whose int
pretation is more transparent than that of a detailed mic
scopic model. In this spirit, the models in this class all sh
a number of simplifications. Only single shear compone
of the strain and stress tensors are considered, which wi
denoted byg ands, respectively. This is, therefore, a cla
of scalar models.

It is further assumed that the system can be coarse gra
into a collection of mesoscopic subsystems, each of wh
are fully described by two scalar variables, namely, a lo
strain l and a stability parameterE. These mesoscopic sub
systems will be referred to aselements. We simply assume
here that such a coarse graining is possible, notwithstan
the significant practical challenges in constructing a suita
scheme for any given microscopic model.

At any given instant, each element has a probability
yielding per unit time that is denoted byG5G(E,l ). When
an element yields, it is assumed that its microscopic cons
ents are rearranged to such a degree that it loses all mem
of its former configuration. Its strain returns to zero, and it
assigned a new value ofE that is drawn from aprior distri-
butionr(E). Suitable functional forms forG(E,l ) andr(E)
will be discussed below. The value ofE remains fixed until
the element yields again, butl follows the global straing
according tol̇ 5ġ. Thus the elements are affinely deforme
by the flow field, which is assumed to be homogeneous.

Let us defineP(E,l ,t) to be the probability density func
tion of elements that have a local strainl and a barrierE at
time t. ThenP(E,l ,t) evolves in time according to two dis
tinct mechanisms: the homogeneous shearing at a rateġ, and
the yielding of elements at a rate ofG(E,l ) per unit time.
Thus the master equation forP(E,l ,t) is

]

]t
P~E,l ,t !1ġ

]

] l
P~E,l ,t !52G~E,l !P~E,l ,t !

1v~ t !d~ l !r~E!. ~1!

The second term on the left-hand side represents the incr
in local strainsl according to the uniform global strain rat
ġ. The right-hand side describes the yielding of elemen
The first term, which is negative, accounts for the lo
9-2
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JAMMING, HYSTERESIS, AND OSCILLATION IN . . . PHYSICAL REVIEW E64 061509
of elements as they yield at a rateG(E,l ). Conversely, the
second term represents these same elementsafter they have
yielded, which have a strainl 50 and a value ofE drawn
from r(E). The total rate of yieldingv(t) is defined by

v~ t !5E
0

`

dEE
2`

`

dlG~E,l !P~E,l ,t ! ~2!

5^G~E,l !&. ~3!

Here we have introduced the notation that the angular bra
ets ‘‘^ . . . & ’’ represents the instantaneous average of
given function overP(E,l ,t). This will be used frequently in
what follows.

The master equation~1! only describes the evolution o
the strain degrees of freedom. To characterize the rheolog
response of the system, some relation must be found betw
the local strainsl and the global stresss. This involves two
further assumptions. First, the elements are supposed to
have elastically between yield events, so that the local st
is just kl, wherek.0 is a uniform elastic constant. Secon
s is the arithmetic mean of the local stresses, ors5^kl&
5k^ l &. Other averaging procedures could be employed@21#,
but we focus here on the simplest nontrivial option. Althou
the local stress-strain relationship is elastic, the global st
also incorporates the yielding of elements and, as will
seen below, thes-g relationship is not a linear one.

We have been unable to find an analytic solution to
master equation~1! for any nontrivialG(E,l ). Instead it has
been numerically integrated using the procedure summar
in Appendix A. However, it will sometimes be necessary
refer to the steady state solution for a constantġ5” 0, which
can be found exactly,

P`~E,l !5
v`

ġ
r~E!expF2

1

ġ
E

0

l

dl8G~E,l 8!G . ~4!

This is derived by setting] tP50 in Eq. ~1! and integrating
the resulting first-order ordinary differential equation wi
respect tol. The asymptotic yield ratev`[ limt→`v(t) can
be found by requiring that the integral ofP`(E,l ) is unity.

A. Yielding modeled as an activated process

In the SGR model, the yield rateG(E,l ) was assigned a
functional form similar to that of an activated process@7#.
This was based on the idea that each element can be r
sented by a single particle moving on a free energy la
scape, which remains confined within a well of depthE until
random fluctuations allow it to cross over this barrier into
different well, with a new barrierE8. Thus yielding can be
identified with barrier crossing. This description is similar
that of activated processes in thermodynamic systems; h
ever, the random fluctuations here arenot necessarilydue to
the true thermodynamic temperature. They may arise ra
from a form of homogeneous mechanical noise generate
nonlinear couplings between the elements; see Ref.@7# for a
06150
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fuller discussion on this point. To avoid possible confusio
this effective temperature is denoted by the symbolx rather
thanT.

Although the energy barrier of an element is initiallyE, as
it becomes strained it will gain an elastic energy of (1/2)kl2

and thus will have a smaller effective energy barrierDE
5E2(1/2)kl2. Thus the yield rate will take the form

G~E,l !5G0 expF2

E2
1

2
kl2

x
G , ~5!

where the attempt rateG0 sets the time scale of the yielding
The effective temperaturex is constant in the SGR mode
and essentially acts as a parameter of the model. Howe
sincex may be generated in part by internal couplings b
tween the elements, it should be allowed to vary with t
state of the system, i.e.,x5x„$P(E,l ,t)%….

In this paper, we shall not consider the most general p
sible form forx, but shall instead focus on a more restrict
class for whichx5x(s,l ). This corresponds to the realiza
tion that, as an element is strained, it may become more
less susceptible to the noise, and hence its ‘‘temperaturx
may change. Allowingx to also depend ons reflects that this
change in susceptibility to noise may in part be aglobal
phenomenon, i.e., thex of a given element may depend o
the state of all of the elements around it. Clearly, deriving
actualx(s,l ) for any given material would be a highly com
plicated task, of comparable difficulty to the original coars
graining procedure described above.

For further simplicity, we shall not considerx5x(s,l )
but shall instead focus on two limiting cases:x5x(s) is
described in Sec. IV, andx5x( l ) is assumed in Sec. V an
Sec. VI. The relevant results for the SGR model, which c
responds to the case ofx5(const), are also summarized i
Sec. III.

B. Natural units and the r„E… distribution

We have yet to specifyr(E), the distribution of energy
barriersE for elements that have just yielded. In the SG
model, r(E) is assumed to have an exponential tail,r(E)
;e2E/E0 as E→`, which gives rise to a finite yield stres
and diverging viscosity for some values ofx, but not others
@7#. Although it is possible to justify the occurrence of a
exponential tail in some contexts@22#, we prefer instead to
treat this choice ofr(E), combined with the Arrhenius form
of G(E,l ) ~5!, as a recipe for generating a yield stress with
this simple picture of activated yielding. This may seemad
hoc, but it should be realized that jamming is in reality
many body effect, involving collective behavior between
large number of degrees of freedom. It should, therefo
come as no surprise that assumptions are required to des
jamming within this single-particle picture.

For much of this paper, we shall assume thatr(E) has an
exponential tail, just as in the SGR model. In fact, for t
numerics the definite formr(E)5(1/E0)e2E/E0 has been
used, although it is not expected that the precise shap
r(E) for small E will alter the long time or steady stat
9-3
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behavior of the system. This is because small values oE
correspond to elements with short expected lifetimes. F
thermore, it turns out that the oscillatory motion described
Sec. V doesnotdepend on the choice ofr(E), and in Sec. VI
the simpler formr(E)5d(E2E1) is used, with qualitatively
similar results.

There remain three constants in the problem. These
the elastic constantk, the attempt rateG0 in Eq. ~5!, and the
constantE0 in the definition ofr(E) given above. However
these can all be scaled out of the model. For instance,k sets
the scale of the stress, and, therefore, can be remove
rescalings to s/k. Similarly, G0 gives the only intrinsic time

scale in the system, and can be scaled out throught and ġ.
Finally, E0 sets the scale of the energy barriers, and can
scaled out throughx(s,l ).

In what follows, we have adoptednatural units in which
k5G05E051. This means that the actual values fort, g,
ands given below should not be compared to experimen
values without first rescaling with the appropriatek, E0, and
G0 for the material in question. For example, the typic
yield strain according to theG(E,l ) given in Eq. ~5! is
A2E0 /k, which is when the effective energy barrier va
ishes. In natural units, this is ofO(1); however, for soft
materials it will typically be of only a few percent, and wi
be even smaller for hard materials. Thus the scale of the l
strainsl, and, therefore, the scale of the global straing(t),
will generally be significantly smaller in real materials th
with natural units.

III. SUMMARY OF THE STANDARD SGR MODEL

As discussed in the previous section, the standard S
model is realized when~using natural units! the yield rate
G(E,l ) is chosen to take an Arrhenius form with an ener
barrier E2(1/2)l 2 and a constant effective temperaturex,
and r(E) has an exponential tailr(E);e2E. Many results
for this case are already known@6–8#. The purpose of this
section is to briefly describe those results that will be refer
to in later sections.

Let us assume that the system is driven by a given st
g(t), and thatg(t);ġt as t→`, whereġ5” 0. Without loss
of generality we takeġ.0 hereafter. Under these condition
the system will reach the steady state solutionP`(E,l ) al-
ready given in Eq.~4!. The asymptotic stresss is found by
averaging the local strainl over P`(E,l ), i.e.,s5^ l &, which
defines the flow curves(ġ). Example flow curves for differ-
ent values ofx are shown in Fig. 1. In all cases the gradie
ds/dġ decreases with increasingġ, indicating that the ap-
parent viscosityh[s/ġ decreases withġ and that the sys-
tem is everywhere shear thinning.

It should also be noted that there is a a one-to-one corre
spondence betweenġ ands. This means that every point o
the curve can be reached in one of two ways: either by
plying a known straing(t);ġt, as described above, or b
imposing a constant stresss. The uniqueness of the stead
state solution ensures that the sameP`(E,l ) will be reached
in both cases. Of course, this assumes that the steady st
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reached at all, for which it must both exist and be stable.
the standard SGR model, the steady state solution is stab
long as it exists@7,8#, but this does not hold for allx(s,l )
under an imposed stress, as will be discussed in l
sections.

The behavior ofs as ġ→01 depends upon the choice o
x @7#. For instance, forx.2 the stress scales ass;ġ and the
system is Newtonian, whereas there is a power law fl
regimes;ġx21 for 1,x,2. However, the most importan
regime for our purposes isx,1, for which s approaches a
finite value. The yield stresssY , defined by

sY5 lim
ġ→01

s~ġ!, ~6!

smoothly tends to zero asx→12 and remains zero for al
x>1. If a system withx,1 has a stresss,sY applied to it,
then it will never reach a steady state with a finiteġ, simply
becauseP`(E,l ) for these parameters does not exist. Inste
the strain will logarithmically creep according tog(t); ln t
@8#. There may be a crossover to a different behavior at
times if s is close tosY , but it must always be true thatġ
→01.

The logarithmic creep ing(t) under an imposed stres
s,sY is an important result. If it is realized in an exper
mental situation, then when the strain rateġ;1/t drops be-
low the resolution of the apparatus, which it must do at lo
times, it might be erroneously deduced that the system
stopped flowing altogether, i.e.,ġ'0. This is in accord with
our intuitive notions about jamming: the sample initial
flows when pushed, but later stops flowing, or ‘‘jams.’’ On
might argue that, technically, a jammed system should h
ġ50 exactly, but it is not possible for any model in this cla
to sustain a finite stress without a finiteġ ~unless the sample
is allowed to age for an arbitrarily long period of time befo

FIG. 1. Flow curves for a system with a constantx, i.e., the SGR
model. From top to bottom, each line corresponds to a valuex
increasing from 0.25 to 2.5 in steps of 0.25. The linesx51 andx
52 have been highlighted. A finite yield stresssY[ limġ→0(s)
exists only forx,1. The prior distribution isr(E)5e2E.
9-4
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JAMMING, HYSTERESIS, AND OSCILLATION IN . . . PHYSICAL REVIEW E64 061509
being sheared; see Ref.@8#!. This is because each individua
element has a finite relaxation time until it yields and
leases its stress, which can only be balanced by an increa
strain.

With this insight, we nowdefinea ‘‘jammed’’ state for this
class of systems to be a configuration that has a finite lim
ing stresssY when it is driven by an arbitrarily small strai
rate ġ501. For the SGR model, this corresponds tox,1;
however, forx5x(s) it may also depend on the history o
the sample, as will now be discussed.

IV. JAMMING MODEL A: xÄx„s…

It is useful to recall the physical picture that underlies
x5x(s). As the system becomes sheared, either by an
posed straing or an imposed stresss, it will become dis-
torted, and this may affect its susceptibility to noise. T
precise manner in which this happens will depend on
microscopic composition of the material in question. For
systems we are interested in, i.e., those that can shear th
or jam, the distorted configuration islesssusceptible to noise
that the undistorted one. One way to incorporate this effec
to regard the system as becoming ‘‘colder’’ as its shear st
increases, which corresponds to a decreasingx(s). Thus set-
ting x5x(s) provides a mechanism for allowing the effe
tive temperaturex to evolve with the global state of th
system.

In this section we shall considerx(s) that takes values
greater than 1 for some ranges ofs, and less than 1 for
others. According to the results of the previous section,
should allow the system to change from a jammed to a flo
ing state in response to the driving, or more precisely,
response to changes ins(t). Thus we may be able to observ
a shear-induced jamming transition~something that is no
possible in the SGR model, for which the existence of a yi
stress depends purely on the choice of the external param
x). For clarity, we shall restrict our attention to the simple
choice of x(s) that has the potential to shear thicken a
jam, namely,x(s).1 for smalls andx(s),1 for larges,
with a monotonic~possibly discontinuous! behavior for in-
termediates.

A. Steady state behavior

Although allowing x to vary in time according tox
5x@s(t)# can complicate the transient behavior of the s
tem, as described below, the steady state is easy to ana
This is because the very definition of a steady state me
thats asymptotically approaches a constant value, and thx
also becomes constant. There is, therefore a straightforw
procedure for generating thex5x(s) flow curves from those
of constantx: for any given value ofs, one simply finds the
SGR flow curve for the corresponding value ofx(s) and
reads off the required value ofġ. This amounts to interpo
lating between the various SGR flow curves. Some exam
are given in Fig. 2 for variousx(s) that change from 1.5 for
small s to 0.5 for larges.

If x(s) takes values greater than 1 for smalls, but
smaller than 1 for largers, then it may jam under an applie
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stress. However, for this situation to be realized, the app
stress must be simultaneously large enough thatx(s),1,
and also small enough thats,sY . Since the yield stresssY
also depends onx, the precise criterion for the upper yiel
stress to be attainable is that there is a range ofs for which

s,sY@x~s!#. ~7!

This corresponds to the region in which thex(s) curve falls
below thesY(x) curve when they are both plotted on th
same axes, as in Fig. 3. For example, of the flow cur
already presented in Fig. 2, only the third example obeys
criterion ~7! for a finite range ofs. Imposing a stresss from
within this range will result in a system that is jammed in t
sense that the strain logarithmically creeps,g(t); ln t and
ġ(t→`)50.

Two additional complications arise when the system
driven by an imposed strain rateġ rather than an imposed
stress. First, ifġ is increased at a sufficiently slow rate th
the system is always arbitrarily close to its steady state,
stress may undergo a discontinuous jump from one branc
the flow curve to another, as marked in Figs. 2~b! and 2~c!. If
ġ is decreased in a similar fashion, thens(t) will follow the
upper branch until it again jumps discontinuously at adiffer-

ent value of ġ. Thus the system exhibitshysteresis. Hyster-
esis due to nonmonotonic flow curves has also been obse
experimentally @15–17,19#. The complementary form o
nonmonotonicity, which would allow a discontinuous jum
in ġ for a small change ins, cannot be realized in this clas
of models. This is because there is only one value ofx(s),
and hence one steady state solution, for any given value os.

The second complication concerns the stability of t
jammed state. In Fig. 3, the yield stresssY(x) and anx(s)
that obeys Eq.~7! for a range ofs have been plotted on th
same axes. Also plotted is the line ofs that can be reached
for a small but finiteġ.0, which converges tosY(x) as ġ
→0. These are thes that can be realized in practice, sinc
the steady state solution~4! is not defined forġ[0. For this
example there are three roots: a ‘‘flowing’’ root withs
501, and two ‘‘jammed’’ roots with finitesY.0. The ar-
rows in this diagram point in the direction in which the stre
will be varying for a given point on the linex(s). This
direction is based on the assumption that, for time sca
over whichx can be treated as a constant, which will ce
tainly include the asymptotic regime, the system will beha
like the SGR model ands will evolve towardssY . It is clear
from this that all points tend to flow away from the midd
root, which is, therefore, unstable. If the system is initia
placed near to this root, it will undergo a transient and co
verge to either the higher root, or to the ‘‘flowing root’’ with
s501.

Figure 3 can also be used to predict the stability of
steady state for finiteġ. As ġ increases, the asymptotic stre
s(ġ) for the SGR model will move away from the yiel
stress curve, but will always remain a monotonic decreas
function of ġ @7#. Thus a smoothly decreasingx(s) will only
intersect with it one or three times; when there are th
9-5
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FIG. 2. Flow curves forx(s)5120.5 tanh@a(s20.4)# ~thick lines!, wherea53.5 ~a!, 4.5 ~b! and 10~c!. For comparison, the thin lines
are the constantx curves from Fig. 1. In~b! and ~c!, the vertical dashed line represents the discontinuous jump in stress for a s

increasingġ, and the region marked ‘‘A’’ denotes the range ofs that is unstable under an imposedġ, but is stable under an imposeds. In
~c!, the range ofs for which the system is ‘‘jammed,’’ i.e.,s(01).0, has also been marked. Thex(s) for different a are plotted in~d!,
where it can clearly be seen that only for thea510 case doesx(s) drop below the yield stress curve.
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roots, the middle one is always unstable, for precisely
same reasons as given in the previous paragraph. The r
of s that are unstable and cannot be realized under an

posedġ have been labeled ‘‘A’’ in Figs. 2~b! and ~c!. Note
that the unstable roots correspond to regions of the fl
curve with a negative gradient, as in experiments and fr
other theoretical considerations@13–18#. There are no stabil-
ity issues for an imposeds, for which there is always a
single, stable root.

B. Transient behavior under an imposedġ

There are in principle no difficulties in extending the r
sults described above to a system that is driven by a ti
dependent imposed stresss(t). As long ass(t) tends to a
constant values0 at long times, then the same steady st
behavior as previously discussed will apply, withs replaced
by s0. The transient behavior does not affect the final sta
However, this is not the case when the system is inst
driven by an imposed strain rateġ(t). In this case,s(t) can
vary in a manner that is difficult to predict in advance, so t
06150
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w
m
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e
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t

the final stress reached, and hence whether or not the sy
is jammed, will in general depend on the entire history of t
system.

A concrete example of the history dependence of a yi
stress is given in Fig. 4. Here, the system is first subjecte
a step shear of magnitudeg0, and is then continuously

sheared at a rateġ, i.e., g(t)5g01ġt. As ġ tends to zero,
the stress approaches an asymptotic valuesY ; however,
whether or notsY is finite depends ong0. For g051 the
stress is seen to be converging to a finite values'0.65, but
for g050.1 it rather tends to a ‘‘flowing’’ state withs501

~more precisely,s}ġ0.5 as ġ→01). The system can be sai
to exhibit strong long-term memory, where the use of t
word ‘‘strong’’ means that the memory of an earlier pertu
bation of finite duration does not decay to zero with tim
@8,23–25#.

The choice ofx(s) used in the previous example is in fa
the same as that plotted in the stability diagram, Fig. 3. T
allows for a striking illustration of the instability of the
middle root that lies near the points'0.3 on the stability
diagram. Plotted in Fig. 5 are thes(t) curves for a fixedġ
9-6
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JAMMING, HYSTERESIS, AND OSCILLATION IN . . . PHYSICAL REVIEW E64 061509
51023 and a range of values 0.1<g0<1. It is clear that the
stress will always diverge away from the unstable root at
times, no matter how finelyg0 is tuned. Thus only the root
at s501 ands'0.65 are stable, as previously claimed.

There are many other complications that can arise
transient behavior in a strain-controlled system. For instan
all of the s(t) curves plotted in Fig. 4 reach their glob
minimum smin at a time 1!t!1/ġ. It can be shown tha

FIG. 3. Plot of the yield stresssY(x) from the SGR model,
overlayed with a particular choice ofx(s) that changes value from
1.5 to 0.5 with increasing stress„the actual functional form is
x(s)512

1
2 tanh@25(s20.25)#…. The dashed line is a schemat

representation of the asymptotic stresss(t→`) for a small but

finite ġ, which is what is actually attainable for these models. T
arrows represent the direction in which the stress will vary fo
constantx, and explain the given stability of the roots.

FIG. 4. Plot of stress versus strain forg(t)5g01ġt and the
samex(s) as in Fig. 3. The upper set of lines corresponds tog0

51 and the lower set tog050.1. Within each set, the lines refer t

~from top to bottom! ġ5331023, 1023, 331024, and 1024. As

ġ→01, the upper curves are seen to be converging tos→sY

'0.65, whereas the lower curves are approaching a zero-stress

according tos'kġ0.5, wherek is an arbitrary constant. In all case
the system was first allowed to reach equilibrium under zero sh
before the step shearg0 was applied.
06150
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smin becomes arbitrarily small asġ→01. Since this corre-
sponds to a state with a high effective temperaturex(smin

501).1 in which the stress is rapidly dissipated, then ifġ
is sufficiently small,s(t) will remain low and the system
will crossover to the flowing root, irrespective ofg0. How-
ever, this effect can be reversed if the initial step shea
replaced by a smoothly varyingġ(t), such as one that expo
nentially decays towards its final value ofġ, which is more
like what could be attained in an actual rheometer. We w
not pursue these complications any further here.

In summary, the SGR model generalized to allow the
fective temperaturex to vary with the global stresss can
exhibit, for suitable choices ofx(s): hysteresisin s(t) for
slowly varying ġ, as seen from the flow curves in Fig. 2
shear inducedjamming, as in Fig. 4; andstrong history de-
pendenceof the existence of a yield stress.

V. JAMMING MODEL B: xÄx„ l …

The second limiting form forx5x(s,l ) to be considered
is one that depends only on the local strain,x5x( l ). This
marks a more drastic departure from the SGR model than
x(s) considered in the previous section, since now ev
element will generally have a different effective temperatu
x. The steady state will, therefore, be different from that
the SGR model, and it will not now be possible to map t
flow curves forx( l ) across from those for constantx. One
could also envisage regions of the parameter space for w
the steady state cannot even be reached. Indeed, this is
cisely what we find: for some finite region of paramet
space, the system reaches an oscillatory regime unde
imposed stress, but not under an imposed strain. This is
central finding of this section.

The physical justification in choosingx5x( l ) is similar to
that already discussed forx5x(s), i.e., it is assumed that th

e
a

tate

ar

FIG. 5. The variation in stress for the system of Fig. 4 driven

the imposed straing(t)5g01ġt with ġ51023, demonstrating the
inability to reach the root ats'0.3. From bottom to top on the
left-hand side, the ‘‘initial condition’’g0 takes the valuesg050.1,
0.4, 0.48, 0.49, 0.491, 0.5, 0.6, and 1.
9-7
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material can become more or less susceptible to noise i
strained state. The main difference is that this is now
sumed to be a local effect, that can be described purely
the level of individual elements. Just as in the previous s
tion, we shall focus our attention onx( l ) that decrease with
l, since it is these that have the potential to exhibit sh
thickening.

A. Monotonicity of the flow curves

Givenx( l ), the steady state stresss for a givenġ can be
found by calculating the mean strain^ l & for the steady state
solution~4!. Some example flow curves are plotted in Fig.
They are clearly monotonic: their gradient is everywhe
positive, and there is a one-to-one relationship betwees

and ġ. In these figures, thex( l ) were chosen to vary in a
stepwise manner, taking a valuex.1 for l ,0.4 and a lower
valuex,1 for l .0.4. This is typical of thex( l ) employed in
this section. However, the monotonicity result is entire
general and applies for anyx5x( l ), as demonstrated in Ap
pendix B.

The physical reason for the monotonicity of the flo
curves is that the elements are uncoupled whenx5x( l ) and
the system is driven by an imposed straing(t). That is, the
expected strain reached before a given element yields
not depend on the state of any other elements. This isnot
true for the general casex5x(s,l ), when the value ofx for
an element depends on the global stresss, and thus on the
state of the rest of the system. As long as independe
holds, the average strain reached before each individual
ment yields, and hence the global stresss, can only increase
with increasingġ. Thus the flow curves must be monoton

The monotonicity of the flow curves is an important fin
ing. As mentioned in Sec. I, rheological instabilities oft
arise when the system has been driven to a point on its
curve that has a negative gradient. Fluctuations can t
cause spatial inhomogeneities to arise, such as shear b
with either the same stress and different strain rates, or e
strain rates but differing stresses@13,14#. Alternatively, tem-

FIG. 6. Examples of typical flow curves whenx depends on the
local strainl. Here,x( l )50.5 for l .0.4, but takes the higher valu
of 1.5 ~solid line! or 2.5 ~dashed line! for l ,0.4. These lines were
generated from the steady state solution of the master equatio
06150
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poral oscillations may be observed@17,18#. Since the flow
curves forx5x( l ) have no regions of negative slope, on
would not expect any instabilities to appear in this mod
Nonetheless temporal oscillations inġ do occur for a finite
range of imposeds, as we now describe.

B. Oscillatory behavior under an imposeds

The monotonicity result described above was attributed
the independence of the elements, which is only true fo
strain controlled system. By contrast, the elements beco
coupled under an imposeds since, for example, a single
element yielding causes the mean strain to decrease slig
which must be immediately countered by an increase inġ,
which affects every element in the system. Thus collective
behavior can now occur. In fact, this collective behavior ca
not alter any system that has already reached steady fl
which we know is identical for strain and stress controll
systems. Thus as long as the stress-controlled system rea
steady flow, it will fall onto the same monotonic flow curv
as before. However, the couplings between the elements
drastically alter the transient behavior, to such an extent
steady flow may never be reached.

An example of collective behavior is given in Fig. 7
which showsġ(t) for a system driven by an imposed stre
s50.05. As before, this plot was generated by numerica
integrating the master equation~1! from an initially un-
strained state, using the procedure described in Appendi
For this example, the system undergoes a short transien
fore entering into an oscillatory regime, in whichġ(t) varies
with a single period of oscillation. There is no suggestion
a decay in the amplitude of the oscillation inġ(t) over the
largest simulation times attainable, even when plotted aga
ln t ~not shown!, suggesting that this is the true asympto
behavior. For different choices ofx( l ) it is not possible to

FIG. 7. The straing(t) under an imposed stresss050.05 for a
system in whichx depends on the local strain according tox( l )
51.8 for l ,0.4 andx( l )50.8 for l .0.4. ~Inset! The strain rate

ġ(t) for the same data after the transient.
9-8



ig
c
ly
a

he

f

c
ry

o

ot

a
-
te

o
th

e

a
n
al
h
ro
in

le
la
v
e

ve
al

be
he
s
Fig.
to

a

en

le-

it
se-
rre-

to
d,
a
is
eak.

he
e-

ele-
is

te
t
in-
tion

ed
ig. 9
as

are
e-
t

. 9.
s-

d,

JAMMING, HYSTERESIS, AND OSCILLATION IN . . . PHYSICAL REVIEW E64 061509
identify a single period of oscillation, as demonstrated in F
8. It is not yet clear if this behavior represents a distin
regime with more than one period of oscillation, possib
even a precursor to chaotic behavior, or if it is merely
long-lived transient that eventually crosses over to eit
steady flow or a single-period oscillation at later times.

The extensive simulation times means that we have so
been unable to map out the class ofx( l ) that give rise to an
oscillatory or otherwise nonsteady state. Nonetheless we
make the following observation. For all of the oscillato
cases that we have observed thus far,x( l ) changes from a
value in the range 1,x,2 for small l, to a valuex,1 for
larger l. Other choices ofx( l ) may produce an oscillatory
transient, but its amplitude always seems to decay to zer
time. It is not clear to us why only this class ofx( l ) can
produce a stable oscillatory regime, but it is tempting to n
that the requirement that 1,x,2 for small l is also the
range ofx for which the SGR model does not have a line
regime under an imposeds @8#. That is, a significant propor
tion of elements will eventually gain a finite strain, no mat
how smalls is, and thus the variation inx( l ) will eventually
be ‘‘felt.’’

Once a suitablex( l ) has been found, it is possible t
move in and out of the nonsteady regime by varying
applied stresss. Generally, we find that a highs gives rise
to steady flow, and lows produces oscillations; however, th
excessive simulation times needed for smalls means that we
have not been able to rule out another crossover to ste
flow as s→01. Within the oscillatory regime, the mea
strain rate averaged over a period of oscillation is gener
much lower than that predicted by the flow curve. For t
examples already given, the mean strain rate deviates f
the flow curve by a factor of 2 for the oscillations shown
Fig. 7, and by two orders of magnitude for the~possibly
transient! oscillations of Fig. 8. Again, we have been unab
to fully characterize this behavior with the available simu
tion resources. To an extent, these problems will be alle
ated by considering a simplified model considered in S

FIG. 8. The straing(t) under an imposed stresss050.1 for
x( l )51.5 for l ,0.7, 0.5 forl .0.7. Despite the long times attaine
there is no clear indication of a single period of oscillation.
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VI. Before turning to consider this, we provide a qualitati
description of the oscillatory behavior in terms of the loc
strainsl.

C. Qualitative description of the evolution of the system in the
oscillatory phase

The mechanism behind the oscillatory behavior can
qualitatively understood by inspecting the evolution of t
P(E,l ,t) distribution during a single period of oscillation. A
an example, a suitable sequence of snapshots is given in
9. To aid in the interpretation of these figures, it is useful
recall some properties of the master equation~1!. First, the
convective termġ]P/] l means that any maxima or minim
in P(E,l ,t) will move in the direction of increasingl at a
rate ġ(t). These extrema will eventually disappear wh
large values ofl are reached, and the yield rateG(E,l ) be-
comes very high. Also, there is a flux of newly yielded e
ments atl 50, which have barriersE weighted according to
r(E).

Since the oscillatory behavior is by definition cyclical,
is somewhat arbitrary where one chooses to start the
quence of snapshots. In Fig. 9 we have chosen times co
sponding to before, during, and just after the point whenġ
reaches its maximum value. In the first snapshot,P(E,l ,t) is
concentrated into two regions: a sharp peak atl'0, and a
broader peak withl in the range 1, l ,3. The first peak is
‘hot’ in the sense that it has the higher value ofx( l ), but
since it has a low strain, it does not significantly contribute
the total stresss. The second peak, although highly straine
lies in a region in whichx( l ) is small, and, therefore, has
low rate of yielding. As long as the yield rate is low, so too
the rate of stress loss from elements that belong to this p
Therefore, the strain rateġ will also be low, and indeed this
first example corresponds to a system in whichġ is close to
its minimum value.

This state of affairs is not stable, however. Although t
yield rate of the highly strained elements is low, it is non
theless nonzero, and, therefore, so isġ. Consequently the
whole system is being convected at a finite rate, so the
ments in the high-l region are becoming more strained. Th
decreasestheir effective energy barrierDE5E2(1/2)l 2,
which increasestheir yield rate. But an increased yield ra
means an increasedġ, which in turn increases the rate a
which the elements are becoming more strained, which
creases their yield rate yet more, and so on. This descrip
is that of apositive feedback loop, which causesġ to in-
crease at ever faster rates until all of the heavily strain
elements have been depleted. The second snapshot in F
show the state of the system shortly before this h
happened.

At the same time that the highly strained elements
being depleted,ġ is close to its maximum value and cons
quently P(E,l ,t) in the small l region becomes somewha
flat, certainly much flatter than under a smallġ. This can
clearly be seen in the second and third snapshots of Fig
When ġ again falls to lower values, this flat part of the di
9-9
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FIG. 9. Snapshots ofP(E,l ,t) for the same system as in Fig.
at three different times. For clarity only three values ofE are
shown, namely,E58 ~solid line!, E510 ~dashed line!, and E
512 ~dot-dashed line!. The chosen times correspond to just befo

~a!, during ~b!, and just after~c! the point at whichġ reaches it
maximum value. The period of the oscillation is approximatelyDt
51.63104, so that the time between~a! and~c! comprises roughly
1
2 of a single oscillation. In each case, thel at whichx( l ) changes
from 1.8 to 0.8 is represented by a vertical dotted line, and
arrow points to thesame dip in the E510 distribution, which

moves to the right under the action ofġ.
06150
tribution will start to decay as the elements within it yiel
However, the yield rate depends onx( l ), and sincex( l )
changes to a lower value atl 50.4, P(E,l ,t) will decay
much more rapidly forl just smaller than 0.4 than forl just
greater than 0.4. Thus a dip will occur around the poinl
'0.4, which can clearly be seen in the final snapshot.
time increases, this dip will become more pronounced u
the system can again be separated into a population of hi
strained elements and a second population withl'0. This is
where we began, and thus the cycle is complete.

VI. JAMMING MODEL C: xÄx„ l …, MONODISPERSE E

It is possible to more completely describe the oscillato
regime for a simplified version of the model where eve
element has the same energy barrierE1. This formally cor-
responds to a ‘‘monodisperse’’ prior distributionr(E)
5d(E2E1), as opposed to the exponentialr(E)5e2E

which has been employed in all of the earlier sections. T
reduction in the number of degrees of freedom that this
tails significantly decreases the simulation times, and, th
fore, allows for a more thorough numerical investigation
the model. It is also possible to derive an analytical criter
for the stability of the steady state, as described below.

Furthermore, the very fact that a monodisperse sys
also has an oscillatory regime clearly demonstrates that
phenomenon is robust. In particular, it does not require
usual SGR assumption of an exponential tail tor(E). There-
fore, the possible existence of a yield stress, which was
central to the history-dependent jamming scenario at c
trolled ġ described in Sec. IV, is not necessary. This robu
ness means that the mechanism behind the oscillation
controlleds may be realizable in a much broader range
models than the restricted set considered here and, poss
may also occur in real materials.

The emergence of oscillations in this monodisperse mo
has been separately discussed elsewhere@20#. Here we sup-
ply extra details, such as the stability analysis of the ste
flow state. For the sake of completeness, the overall beha
of the model will also be briefly described, although we re
the reader to Ref.@20# for a fuller discussion of many of the
points raised below.

A. Steady state behavior for monodisperseE

Perhaps the most immediate consequence of only all
ing a single barrierE1 is that the system can never have
finite yield stress. Indeed, in the linear regimeġ→01, the
steady state stress is justs;ġeE1 /x(0), which vanishes with
ġ. There are no qualitative differences forx,1, 1,x,2,
etc., as in the SGR model. The complete lack of a yield str
means that a monodisperse system withx5x(s) will not
exhibit a jamming transition, in contrast to the situation fo
r(E) with an exponential tail described Sec. IV.

One respect in which the monodisperseE model is similar
to the exponentialr(E) case is that its flow curves forx
5x( l ) are also monotonic. In fact, the monotonicity pro
given in Appendix B holds for arbitraryx( l ) andr(E). Thus
there are no regions on the flow curve with a negative slo

e
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JAMMING, HYSTERESIS, AND OSCILLATION IN . . . PHYSICAL REVIEW E64 061509
and, therefore, there are no ranges of control parameter
which one might normally expect bulk shear banding
arise. Just as in the previous section, however, oscilla
behavior can be realized under an imposed constant stre

B. The oscillatory regime

As in the polydisperse case, the monodisperse model
hibits an oscillatory regime under conditions of impos
stress, but not under an imposedġ. However, the oscillatory
regime in the monodisperse model differs from the polyd
perse case in that only single-period oscillations have so
been observed. There is no suggestion of the more com
nonsteady behavior hinted at earlier in Fig. 8, for examp
Some examples of the oscillatory behavior in the monod
perse case are given in Fig. 10. Here, the straing(t) is
shown for three systems withE155 and the samex( l ), but
different imposeds. Remarkably, the mean strain rate^ġ&,
where the use of the angular brackets now denotesġ aver-
aged over a single period of oscillation, is clearly adecreas-
ing function ofs, in complete contrast to the monotonic flo
curve.

Varying s over a wider range of values reveals that stea
flow is reached for either sufficiently small or sufficient
large imposed stresses; only for intermediates are oscilla-
tions observed. Thêġ& as read off from the simulations ar
plotted againsts in Fig. 11, overlayed with the steady sta
flow curve. It is clear that, if the system reaches a ste
state, it falls onto the flow curve and, therefore, the dep
dence of^ġ& with s is monotonic. Within the oscillatory
regime, however, thêġ& line deviates from the flow curve to
an extent that it even becomes nonmonotonic for a br
range ofs.

The shape of the oscillations varies withs. Close to either
transition to the steady flow regime, the oscillations are

FIG. 10. The straing(t) for a monodisperse system withE1

55 under an imposed step stresss50.1 ~solid line!, 0.13 ~dashed
line! and 0.2~dot-dashed line! at a timet50, demonstrating a de

crease in the meanġ with s. Here,x( l )51 for l ,0.4 andx50.4
for l .0.4. The system was initially unstrained.
06150
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proximately sinusoidal, indicating that there is only a sing
finite frequency of oscillation at the transition, the amplitu
of which vanishes with the onset of steady flow. Further in
the oscillatory regime,ġ can no longer be decomposed into
single harmonic, but instead approaches a wave form
which most of the variation inġ is compressed into a sma
fraction of the total period of oscillation. Consequentlyg(t)
approaches an almost rectangular, staircase shape.
mechanism underlying the rapid increase inġ is the same
positive feedback loop that has already been discussed
the polydisperse case, as can be seen by inspecting the
lution of theP( l ) distribution with time@20#.

Near to the transition points ats5sc , the amplitude of
the oscillation appears to vanish asus2scua with a.0, as
demonstrated in Fig. 12. Data fitting suggests that the lo
threshold lies atsc'0.07 with a value ofa'0.7, and that
the upper threshold is atsc'1.204 and has a different valu
of a'0.2. However, the range of values given in this figu
is somewhat limited, constituting only an order of magnitu
of variation in us2scu and an even narrower range of am
plitudes. The reasons for this are purely technical: close
the transition points, the amplitude decays very slowly
time to its asymptotic value, rendering the required simu
tion times impractically long. Hence it is conceivable that t
true values ofa are significantly different from those foun
here. In particular, a value ofa50.5 for both cases, as ex
pected for a Hopf bifurcation@26#, cannot be ruled out.

Finally, plotted in Fig. 13 is the product of the mean stra
rate^ġ& and the period of oscillationT for different values of
s. To first order,̂ ġ&T is seen to be independent ofs, which
suggests that the oscillatory regime can be characterized
single strainl * ;^ġ&T. In this casel * '2.3, which is also the
typical increase ing during a single cycle of oscillation. A

FIG. 11. The flow curve for the same system as in Fig. 10 un

an imposed stress. The circles are theġ as measured from the
simulations, either in the steady state~solid circles! or in the oscil-

latory regime~open circles!. In the latter cases,ġ was averaged
over a whole number of oscillations. The sizes of the circles
larger than the error bars. For comparison, the theoretical fl
curve for the steady state solutionP`(E,l ) is plotted as a solid line.
9-11
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possible interpretation ofl * is that it is the amount by which
the system needs to be strained until the positive feedb
loop discussed earlier starts to dominate the system beha
causing it to ‘‘reset’’ to the start of its cycle. If this is correc
then l * should correspond to the point at which high
strained elements have the same yield rate as unstraine
ements, i.e.,G(0)'G( l * ). Rough calculations based on th
assumption givel * 'A2E1@12x(`)/x(0)#, which for this
example predictsl * '2.4, in fair agreement with the ob
served value.

FIG. 12. The amplitude of the oscillation, defined as1
2 uġmax

2ġminu, against the distance from the transition between the ste
and oscillatory regimes. The upper data set~circles! corresponds to
the transition atsc51.204, and the lower set~triangles! corre-
sponds tosc50.07. For comparison, the solid straight line has
slope of 0.21, and the dashed line has a slope of 0.7.

FIG. 13. The product of the mean strain rate^ġ& and the period
of oscillation T for different stressess, demonstrating that this
quantity is approximately constant. The solid horizontal line rep

sents^ġ&T52.33.
06150
ck
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C. Analysis of the stability of the steady state

A second advantage of the monodisperse model is th
is possible to derive an analytical criterion for the stability
the steady state at fixed driving shear stresss, although even
in this simplified case the resulting expression is still som
what unwieldy. Suppose steady flow is reached with a str
rate ġ`5ġ`(s). Then the correspondingP`( l ) is

P`~ l !5N expF2
1

ġ`

E
0

l

G~ l 8!dl8G , ~8!

where the normalization constantN is fixed by the constraint
*0

`P`( l )dl51. We now look for eigenfunctions$p( l ),g%
and eigenvalues$s% of the linearized relaxation operator b
writing

P~ l ,t !5P`~ l !1«p~ l !est, ~9!

ġ~ t !5ġ`1«gest. ~10!

In these expressions,g is a real constant, and the real fun
tions p( l ) remain to be found. The complex constants de-
termines the stability of the steady state: it is unstable p
cisely when Re(s).0, since the amplitude of the
perturbation will then increase exponentially in time. Co
versely, it is stable when Re(s),0. The frequency of the
oscillatory part of the motion near to the steady state
Im(s)/2p @26#.

The unknown functionp( l ) can be found by inserting
Eqs. ~9! and ~10! into the master equation and neglectin
terms ofO(«2), which gives

p8~ l !ġ`1p~ l !@s1G~ l !#52gP8̀ ~ l ! ~11!

5
gG~ l !

ġ`

P`~ l !. ~12!

This is just a first-order differential equation inl and inte-
grates to

p~ l !5
gN
ġ`

2 FA1E
0

l

dl8G~ l 8!esl8/ġ`G
3expF2E

0

l

dl8
s1G~ l 8!

ġ`
G . ~13!

The constantA can be found by imposing*0
`dlP( l ,t)51,

i.e., *0
`dlp( l )50.

Also, since we are considering a stress-controlled syst
s5^ l & must remain constant and hence

E
0

`

dlp~ l !l 50. ~14!

This global constraint allows the value ofs to be specified.
Inserting Eq.~13! into Eq. ~14! gives, after some manipula
tions, the following equation fors:

dy

-

9-12
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E
0

`

dl1E
0

`

dl2~ l 22 l 1!P`~ l 1!P`~ l 2!e2s( l 11 l 2)/ġ`

3E
0

l 2
dlG~ l !esl/ġ`50. ~15!

Although this equation cannot be rearranged to give an
pression fors in terms of the system parameters, as would
desired, it is still enough to show that a purely exponen
variation away from the steady flow cannot be observ
This follows from the observation that the first line in E
~15! is an odd function inl 22 l 1, but the second line is a
strictly increasing function ofl 2 when Im(s)50. Hence the
equation cannot be obeyed for a purely reals, and the tran-
sient behavior close to the steady state must include an
cillatory component, which is consistent with the simulati
results.

VII. DISCUSSION

One of the most striking findings of this work has be
the observation of oscillations inġ(t) under a constant im
posed stresss for somex5x( l ), as described in Sec. V an
Sec. VI. Some consequences of this phenomenon hav
ready been discussed in Ref.@20#. Two further points will be
discussed here: the identification of the dominant phys
mechanisms, and the relationship to so-called ‘‘stick-sl
behavior observed in other systems. Both of these will
considered in turn.

A. Physical picture and analogous phenomena

In Sec. V C, the mechanism behind the oscillatory beh
ior was explained in terms of two separated populations
elements: a ‘‘cold’’ population of highly strained elemen
with a low x, and a ‘‘hot’’ population of elements withl
'0 and a highx. It was explained how the cold elements c
give rise to a positive feedback loop, causingġ(t) to rapidly
increase until the cold elements have yielded. At the sa
time, a new population of cold elements is produced from
hot one.

Known instances of rheological instability are often e
plained in terms of the spatial coexistence of subpopulatio
or phases. For instance, the temporal oscillations in visco
observed in wormlike micelles under an imposed stress
attributed to a slowly fluctuating interface between a flu
phase and shear-induced structures@18#. For surfactant solu-
tions in the lyotropic lamellar phase, it was attributed to c
existing ordered and disordered phases@17#. However, these
instabilities occur in the vicinity of nonmonotonic regions
the flow curve. Spatial instabilities, such as shear band
can also be found near to where the flow curve has a nega
gradient@13#. By contrast, the temporal oscillations observ
in our models arise even though they are by assumption
tially homogeneous, and the flow curves are everywh
monotonic.

This suggests that the mechanism behind the oscilla
behavior seen here has not yet been observed in a rheolo
context. It is, therefore, sensible to look further afield f
06150
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analogous phenomena. One possibility comes from m
ematical biology. The Glass-Mackey equation describes
variation in time of the size of a population of white bloo
cells in response to a hormonal control system@27#. It has a
form similar to that of a first-order differential equation, b
includes a feedback term that depends on the state variab
an earlier time. Thisdelay corresponds to the maturatio
time of white blood cells from stem cells. Because of th
delay, the population size can vary in time in a nontriv
manner, including oscillatory behavior and chaos@27#.

That some form of time delay may also play a role with
our x( l ) model is clear: once an element becomes ‘‘cold,’’
yield rate remains very low until some time later, when
becomes sufficiently strained that its yield rate becom
comparable to that of ‘‘hot’’ elements. Thus there is a de
between when an element first becomes cold and whe
yields, although here the delay time is not constant but
pends ong(t). Thus it is possible that the oscillatory beha
ior observed forx5x( l ) could be described by a simplifie
equation, similar in form to the Glass-Mackey equation. T
is a particularly enticing proposition, as the Glass-Mack
equation is capable of producing chaos, and chaotic beha
has also been observed in surfactant solutions@28,29#, albeit

in the signature ofs(t) under an imposedġ. It is not yet
clear to us if a meaningful mapping between the two mod
is possible.

B. Oscillatory behavior or ‘‘stick-slip?’’

Deep into the oscillatory regime, the wave form ofġ(t)
throughout a single period of oscillation becomes incre
ingly ‘‘sharp,’’ with most of the variation inġ(t) occurring
in just a small fraction of the total period of oscillation. Th
ratio of the maximum value ofġ(t) to its minimum has been
shown to exceed two orders of magnitude, and we see
reason to deny that greater separations may be attaine
different parameter values.

It is tempting to refer to this behavior ofġ(t) as ‘‘stick-
slip’’ behavior, in which the system is ‘‘stuck’’ until the shor
duration of time in whichġ rapidly accelerates to its maxi
mum value, corresponding to a ‘‘slip’’ event. This kind o
response is also observed in earthquakes@9#, ultrathin liquid
films @10#, and granular media@11,12#, for example. How-
ever, we have instead chosen to refer to the variation inġ(t)
as merely ‘‘oscillatory,’’ since the underlying physics seem
to be somewhat different to the examples of stick-slip beh
ior mentioned above. In particular, the term stick slip is us
ally employed to refer to a surface friction phenomeno
whereas the models studied in this paper have no surfac
indeed any form of spatial definition. They are only intend
to describe the bulk behavior of a material. Furthermore,
only find oscillations inġ(t) under an imposeds, and never
vice versa, whereas stick slip seems to more usually~al-
though not exclusively! refer to variations in the~normal!
stress under a constant driving velocity. Thus to avoid p
sible confusion, we choose not to refer to the behavior
served in the models as stick slip.
9-13
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VIII. SUMMARY

We have introduced a range of schematic models that
capable of exhibiting a form of jamming under an impos
stresss. The models are based on the SGR model of Sol
et al., but differ in that the effective temperaturex is no
longer constant, and can instead vary with the state of
system through either the global stresss or the local strainl.
We have considered choices ofx that decrease for increasin
s or l, which is relevant to the study of shear thickeni
materials. These models have no spatial definition, and
by construction cannot exhibit any form of spatial hetero
neity.

For x5x(s), the flow curves can be extracted from th
known curves for constantx. Many choices ofx(s) produce
flow curves with nonmonotonic regions, which exhibit hy

teresis ins(t) under ramping the strain rateġ(t) first up-
wards and then downwards. Furthermore, a subset of t
x(s) also give rise to ajammedstate for a range of applie
stresses, in that the straing(t) creeps logarithmically,g(t)
} ln(t). The criterion for this to arise is that the curve ofx(s)
drops below the SGR yield stress curvesY(x) when they are
plotted on the same axes. For an imposed strain rate
decays to zero at late times, a jammed configuration
defined as one with a finite asymptotic stress,s(t);sY.0

as ġ(t)→01 and t→`. It was found that whether or not
jammed configuration was reached depends on the e
strain history of the system, a situation that was referred t
history-dependent jamming.

For x5x( l ), the flow curves are always monotonic, a
steady flow is always reached under a constant impo
strain rate g(t);ġt. However, for a range of impose
stresses and some choices ofx( l ), steady flow is not realized
Numerical integration of the master equation demonstra
that ġ(t) oscillated around a well-defined mean with a sing
period of oscillation. The possibility of more complex no
steady behavior in some regions of parameter space c
not be ruled out. A similar oscillatory behavior occurs with
simpler model in which every element has the same ene
barrier @20#, which suggests that this phenomenon is robu
Finally, we discussed the relationship between this osc
tory behavior and that observed in experiments, and con
ered analogous phenomena from fields outside of rheolo
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APPENDIX A: SIMULATION DETAILS

Direct numerical integration of the master equation~1!
has proven to be unstable with respect to discretization
rors. Instead, the results in this paper were generated f
the transformed equation
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]P~E,D l ,t !

]t
52G„D l 1g~ t !…P~E,D l ,t !1v~ t !

3d„D l 1g~ t !…r~E!, ~A1!

whereD l 5 l 2g(t). This removes the convective term an
dramatically improves numerical stability. The discrete pro
ability distribution Pi j 5P( idE, j d l ) was defined on a rect
angular mesh of points$ i j % and evolved according to Eq
~A1! by using a straightforward Euler method. A further r
finement was to average both the evolution equation~A1!
and the initial conditions over the ranges (E,E1dE) and
(D l ,D l 1d l ). This significantly reduces the number of me
points required for the simulations to properly converg
without unduly increasing the algorithmic complexity. Th
delta function was treated as a triangle of base width 2d l and
height 1/d l , but any sufficiently narrow function gave th
same results.

Two classes of initial conditions were employed, but t
long-time behavior of the system was found to be identica
both cases. Only the short-term behavior varied, and t
only in a nonessential manner. For the sake of completen
the initial conditions were: ~i! A ‘‘quench’’ P0(E,l )
5d( l )e2E, which corresponds to the unstrained equilibriu
at x5`, or ~ii ! P0(E,l )5d( l )(1/E0)e2E/E0 with E05@1
21/x( l 50,s50)#21, which corresponds to an unstraine
system that has been allowed to reached equilibrium. N
that this second initial state is only defined forx( l 50,s
50).1 @30#.

The strain g(t) is only known a priori for a strain-
controlled system. When it is rather a known stresss(t) that
is applied,g(t) must be chosen at every time step so that
actual stress does not differ froms(t) by more than a toler-
ance parameter«!1. To ensure that this condition was sa
isfied in our simulations, a series of trial strain rat
ġ (1),ġ (2),ġ (3) . . . were generated and tested on a repl
meshPi j* . The Pi j were not updated until a suitableġ had
been found.

The trial valuesġ ( i ) were generated as follows. For
continuous time variable,ġ(t)5^ lG( l )&P(t)1ṡ(t) exactly,
as seen by multiplying the master equation~1! by l and in-
tegrating over allE and l. This is, therefore, the sensibl
choice forġ (1). However, integrating over a finite time ste
dt inevitably introduces errors ofO(dt), and so the inte-
grated stress will differ from the required value by som
small amountds. Reintegrating withġ (2)5ġ (1)2ds will,
therefore, reduce the error to a smaller amountO(dt2). This
procedure can be repeated to generate a series of su
sively better estimatesġ (3), ġ (4), etc. For our choice of«
51026, we have found that typically 3–5 such trials a
needed at every time step.

APPENDIX B: MONOTONICITY OF THE FLOW CURVES

The purpose of this appendix is to show that the flo
curves are monotonic for any yield rateG( l ) that depends
only on the local strainl. This includes the thermally acti
9-14
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JAMMING, HYSTERESIS, AND OSCILLATION IN . . . PHYSICAL REVIEW E64 061509
vatedG( l ) with x5x( l ), possibly constant, but not whenx
also depends on the stresss. It also applies for an arbitrary
prior barrier distributionr(E).

The steady state solutionP`(E,l ) has already been give
in Eq. ~4!. The asymptotic yield ratev`[ limt→`v(t) is
fixed by ensuring that this expression normalizes to unity

v`
215

1

ġ
E dEE dlr~E!e2 f (s,l )/ġ, ~B1!

where we have introduced the shorthand notationf (s,l )
5*0

l G(s,l 8)dl8. The stress iss5^ l &` , where the angular
brackets ‘̂&`’ denote the average overP`(E,l ). If G de-
pends ons, then as must be chosen that is consistent w
Eq. ~4!. In general there can be more than one suitables.

First consider the caseG5G( l ), so f 5 f ( l ). Then by dif-
ferentiating^ l &` and using Eq.~4!,

]s

]ġ
5

s

v`

]v`

]ġ
2

s

ġ
1

1

ġ2
^ l f ~ l !&` . ~B2!

Similarly, thev` equation~B1! can be differentiated to give

1

v`

]v`

]ġ
5

1

ġ
2

1

ġ2
^ f ~ l !&` . ~B3!

Combining these two expressions produces

ġ2
]s

]ġ
5^ l f ~ l !&`2s^ f ~ l !&` ~B4!

5^~ l 2s! f ~ l !&` ~B5!

5^~ l 2s!@ f ~ l !2 f ~s!#&` .
~B6!
A

din

v.

t

06150
The final line in this equation is valid asf (s) is a constant,
so ^( l 2s) f (s)&`5 f (s)^ l 2s&`50. Since f ( l ) is an in-
creasing function ofl, the quantity in the angular brackets
~B6! is positive both forl ,s and for l .s, and vanishes
smoothly atl 5s. Thus the left-hand side must be positiv
i.e., s always increases withġ, as claimed.

The same conclusion does not hold whenG5G(s,l ).
Sinces depends onġ, differentiating the steady state solu
tion now gives rise to an extra term on the right-hand side
~B2!,

]s

]ġ
5

s

v`

]v`

]ġ
2

s

ġ
1

1

ġ2
^ l f ~s,l !&`2

1

ġ
^ lg~s,l !&`

]s

]ġ
.

~B7!

usingg(s,l )5*0
l @]G(s,l 8)/]s#dl8. Proceeding as before,

ġ2
]s

]ġ
5

^~ l 2s! f ~s,l !&`

11
1

ġ
^ lg~s,l !&`

. ~B8!

Thus it is now possible for the gradient to diverge
^ lg(s,l )& is sufficiently negative, i.e., ifG(s,l ) decreases
sufficiently rapidly with s. For the particular case o
G(s,l )5exp@2(E2 1/2l 2)/x(s)#, the gradient of the flow
curve diverges at any point such that

x8~s!5
2x2~s!ġ

K l E
0

l S E2
1

2
l 82Dexp[2(E2 1

2 l 82)/x]dl8L
`

.

~B9!

We can see no obvious physical interpretation of this ma
ematical criterion.
.
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